- electrodes placed at about the right and left sides of the chest or the flank of the garment body.
- **36**. The biosignal detecting garment according to claim **35**, wherein
 - the electrodes respectively placed at about the right and left sides of the chest or the flank of the garment body are used as two different electrodes.
 - the rest of the electrode is used as at least one indifferent electrode, and
 - a potential difference between the two different electrodes is detected as an electrocardiographic waveform.
- 37. The biosignal detecting garment according to claim 32, wherein the conductive fiber structure is a fiber structure impregnated with a conductive polymer.
- **38**. The biosignal detecting garment according to claim **37**, wherein a dispersion in which the conductive polymer and a binder are dispersed in a solvent is applied to the conductive fiber structure to impregnate the fiber structure with the conductive polymer.
- **39**. The biosignal detecting garment according to claim **37**, wherein the conductive polymer is a mixture of a poly(3,4-ethylenedioxythiophene) and a polystyrenesulfonic acid.
- **40**. The biosignal detecting garment according to claim **32**, a fiber structure used for the electrodes includes a woven or knitted fabric having an areal weight of equal to or more than 50 g/m^2 and equal to or less than 300 g/m^2 .
- **41**. The biosignal detecting garment according to claim **32**, wherein a woven or knitted fabric used for the electrodes includes a synthetic fiber multifilament at least part of which has a fineness of equal to or more than **30** dtex and equal to or less than **400** dtex and a single-yam fineness of equal to or less than **0.2** dtex.
- **42**. The biosignal detecting garment according to claim **32**, wherein a woven or knitted fabric used for the electrodes includes a synthetic fiber multifilament at least part of which has a single-yam diameter of equal to or more than 10 nm and equal to or less than 5,000 nm.
- **43**. The biosignal detecting garment according to claim **32**, wherein a woven or knitted fabric used for the electrodes includes a synthetic fiber multifilament at least part of which has a single-yam diameter of equal to or more than 10 nm and equal to or less than 1,000 nm.
- **44**. The biosignal detecting gainent according to claim **32**, further comprising a resin layer that is layered on a face of the conductive fiber structure used for the electrodes, the face being opposite to another face configured to have contact with skin.
- **45**. The biosignal detecting garment according to claim **44**, wherein the resin layer includes a polyurethane-based moisture-permeable layer.
- **46**. The biosignal detecting garment according to claim **32**, wherein the wiring portion is formed of a printed conductive resin, a laminated conductive resin film, a conductive fiber, or a metal wire.
- 47. The biosignal detecting garment according to claim 32, wherein the wiring portion is formed by sewing-in a conductive fiber, the conductive fiber comprising a fiber coated with a metal.
- **48**. The biosignal detecting garment according to claim **47**, wherein the metal with which the conductive fiber is coated includes silver, aluminum or stainless steel.

- **49**. The biosignal detecting garment according to claim **32**, wherein the wiring portion is disposed on an outer side of the garment body.
- **50**. The biosignal detecting garment according to claim **32**, wherein the wiring portion is formed by sewing-in a conductive fiber, the conductive fiber being sewn in as one thread of a sewing machine by sewing to be exposed mainly on an outer side of the garment body.
- **51**. The biosignal detecting garment according to claim **32**, wherein
 - the wiring portion is disposed on an outer side of the garment body, and
 - part of the wiring portion exposed on the outer side of the garment body is covered with a waterproof electric insulating member.
- **52**. The biosignal detecting garment according to claim **51**, wherein the electric insulating member includes a polyurethane-based film.
- **53**. The biosignal detecting garment according to claim **32**, wherein
 - the wiring portion is formed of a conductive resin, and the wiring portion is formed with the conductive resin being continuously layered on part of one face of a sheet including a waterproof electric insulating member, and with the face of the waterproof electric insulating member on which the conductive resin is layered being bonded to the garment body.
- **54**. The biosignal detecting garment according to claim **32**, further comprising at least two conductive connection systems, the conductive connection systems each including: one of the electrodes;

the measurement device; and

- the wiring portion conductively connecting the electrode to the measurement device, wherein
- at least parts of the conductive connection systems formed on the garment body are separated from each other by a water-repellent and insulating structure.
- **55**. The biosignal detecting garment according to claim **32**, wherein
 - the garment body includes a woven or knitted fabric having a stress of equal to or more than 0.5 N and equal to or less than 15 N at an elongation of 60% in a length or breadth direction, and
 - the electrodes are closely attached to skin at a pressure of equal to or more than 0.1 kPa and equal to or less than 2.0 kPa when being worn.
- **56**. The biosignal detecting garment according to claim **32**, wherein the garment body includes a woven or knitted fabric including elastic yarn and inelastic yarn.
- **57**. The biosignal detecting garment according to claim **56**, wherein the elastic yarn includes a polyurethane-based elastic fiber.
- **58**. The biosignal detecting garment according to claim **32**, wherein the garment body includes a knitted fabric.
- **59**. The biosignal detecting garment according to claim **32**, wherein the measurement device is configured to be attached and connected to and detached from the garment body via a connector.
- **60**. The biosignal detecting garment according to claim **32**, wherein the measurement device functions to transfer data through communication with at least one of a mobile terminal and a personal computer.
- **61**. The biosignal detecting garment according to claim **32**, wherein the measurement device functions to transfer